Home » Surface Remote » University of Wisconsin Atmospheric Emitted Radiance Interferometer
University of Wisconsin Atmospheric Emitted Radiance Interferometer
STATUS
Operational On Demand
AVAILABILITY
On request
REQUEST PROCEDURE
Contact PIs
Surface Remote
Infrared interferometer (2 units-AERIBAGO)
CONTACT
Dr. David Turner
University of Wisconsin, SSEC
1225 West Dayton Street Madison, WI 53706
608-263-1061
dave.turner@ssec.wisc.edu
SECONDARY CONTACT
Mr. Wayne Feltz
University of Wisconsin, SSEC
1225 West Dayton Street Madison, WI 53706
608-265-6283
wayne.feltz@ssec.wisc.edu
SPECIFICATIONS
Facility TypeMobile
Location
VariablesSurface and atmospheric radiance Derived Variables: 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance, 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.(4) surface emmissivity
Archive Data Availabilityhttp://cimss.ssec.wisc.edu/aeri/
REFERENCES
Feltz, W. F., J. R. Mecikalski, 2002: Monitoring High Temporal Resolution Convective Stability Indices Using the Ground-based Atmospheric Emitted Radiance Interferometer (AERI) During the 3 May 1999 Oklahoma/Kansas Tornado Outbreak. Wea. Forecasting, 17, 445-455. Feltz, W. F., H. B. Howell, R. O. Knuteson, H. M. Woolf, and H E. Revercomb, 2003: Near Continuous Profiling of Temperature, Moisture, and Atmospheric Stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42, 584-597. Knuteson, R. O., F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. Ellington, W. F. Feltz, R. K. Garcia, R. A. Herbsleb, H. B. Howell, H. E. Revercomb, W. L. Smith, J. F. Short, 2004: Atmospheric Emitted Radiance Interferometer (AERI): Part I: Instrument Design, J. Atmos. Oceanic Technol., 21, 1763-1776 Knuteson, R. O., F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. Ellington, W. F. Feltz, R. K. Garcia, R. A. Herbsleb, H. B. Howell, H. E. Revercomb, W. L. Smith, J. F. Short, 2004: Atmospheric Emitted Radiance Interferometer (AERI): Part II: Instrument Performance, J. Atmos. Oceanic Technol., 21, 1777-1789 Tobin, D.C., and coauthors, Downwelling spectral radiance observations at the SHEBA ice station: water vapor continuum measurements from 17 to 26 um. JGR, 104, 2081-2092. Turner, D. D., W. F. Feltz, R. Ferrare, 2000: Continuous Water Vapor Profiles from Operational Ground-based Active and Passive Sensors. Bull. Amer. Soc., 81, 1301-1317. Turner D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, 2003: Cloud phase determination using ground-based AERI observations at SHEBA. Journal of Applied Meteorology, 42, 701-715. Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI-lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427-444. Turner, D. D., R.O. Knuteson, H.E. Revercomb, C. Lo, and R.G. Dedecker, 2006: Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Oceanic Technol., 23, 1223-1238.
REMARKS
Operational Mode: Fixed angle dwells Measurement Range: 520 to 3300 wavenumbers Vendor/Manufacturer (w/link)BOMEM in Canada; AERI software developed by the University of Wisconsin Specifications: 1 % in radiance, 7 min temporal resolution. Temporal resolution can be increased to 20-s. Frequency: 520 to 3300 wavenumbers Spectral resolution: ~1 cm-1 Aperture: 1.8 deg beamwidth
UPDATED ON
6 Oct 2009 11:38